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Abstract 
Bacteria can form a dangerous threat to plants. To protect itself, a plant can use many different 

molecular responses to protect itself from these hazardous pathogens. Why specific molecular 

pathways are expressed however, is currently not well understood. In this project we look at a paper 

by (Maier et al., 2021) and use its RNA sequence data of Arabidopsis Thaliana plants to rerun their 

data analysis. We try to find if different bacteria eliciting a strong response constitute to the same 

pathways being expressed or not. Also, the so called GNSR genes from the paper are looked into, 

and we try to figure out if these are actually consistently expressed in the different samples. Our 

results show that similar pathways are expressed in all samples. One of these pathways is the 

phenylpropanoid pathway, involved in lignification of the cell wall. However, some differences 

between samples can be found. It is still uncertain why this is the case as these differences are not 

caused by the phylum or pathogenicity of the bacteria. 
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Introduction 
Plants in nature are often subject of bacterial inoculation. This can be harmless, having the bacteria 

work together with the plant in symbiosis (Cocking, 2003). Much research on this has been done, 

because it can improve crop yield greatly and be beneficial to the plant. Bacteria can also form a 

harmful threat to the organism. They can cause diseases or other forms of crop loss. A lot less is 

known about the way plants are negatively influenced by its microbiome. It is important to know 

which genes are important in defense regulatory pathways. This way, we can learn about the 

function of these genes and try to replicate it (Chezem et al., 2017). We can use this knowledge to 

better protect the plant, this can lead to bigger crop yields or more resistant crops to droughts or 

floods. In our case, it can lead to a higher resistance to bacterial diseases. 

Some research has been done, for example in a paper from Maier et al (Maier et al., 2021). A study 

was done on 39 endogenous bacterial strains from Arabidopsis Thaliana. This way, they tried to 

assess host transcriptional and metabolic adaptations to these bacterial encounters. In the paper, 

they find a general response in most encounters, consisting of 24 genes. They call these genes 

general non-self-response (GNSR) genes. These genes are all highly differentially expressed. It is 

proposed that these genes constitute a defense strategy which can be used against diverse strains 



and overall contributes to the protection of its host. The GNSR is found to be linked to the 

tryptophan-derived secondary metabolism. 

In this project, we will look at these genes and see if the results obtained by Maier et al. are actually 

correct. This will be done by recreating their data analysis pipeline using the Maier et al. RNA 

sequence data. In addition, genes other than the 24 GNSR genes will be looked at. There might be 

other genes which are also consistently expressed in all samples. This could lead to another general 

pathway. To structure the research, the following research questions were formulated: 

- For bacteria that elicit a strong response, are the same defense pathways triggered or 

different ones?  

- Do these defense pathways differ from the GNSR genes pathway? If so, in what way? 

As can be seen in the research question, only bacteria that elicit a strong response are looked at. 

Bacteria eliciting a strong response might elicit different pathways as lowly expressed pahtways. 

While some pathways might only need little expression of its genes to perform its function, others 

might need a high expression for its proteins to perform its function correctly (Karasov et al., 2017), 

(Kwon et al., 2020).  

The results could also differ from the results in the paper of Maier et al. because a subset of the 

samples is taken in account. Other reasons for creating this subset are that these strong responses 

will yield the clearest and most differentially expressed results. Also, the sample size is decreased a 

lot which speeds up the research process by decreasing running time on the cluster. 

Design 
The entire data analysis pipeline had to be recreated.  This process was divided into three main 

parts. 

1. Mapping and annotation 

2. Counting and Differential expression analysis 

3. Clustering and GO/pathway enrichment 

At first, the idea was to include all three parts into one big snakemake file. In the end, the three 

parts were all in separate steps. It will be discussed later why this combination of steps was more 

challenging than expected. The full pipeline is shown below in Figure 1. 

 

Figure 1: Data analysis pipeline 



To speed up the coding process, a test data set was created. This way, scripts and tools could be 

validated while only needing little processing capacity. This data set consisted of two samples with 2 

replicates per sample. The samples were Leaf51 and the axenic control from the paper. 

Mapping and annotation 
RNA sequence data was provided by Maier et al. To see from which genes these RNA sequences are 

transcribed, it is necessary to map these reads to the genome of A. Thaliana. In this project, HISAT2, 

version 2.1.1, was used for the mapping(Kim et al., 2019). In the Maier et al. paper, RSEM was used. 

This was changed in this project due to the speed of RSEM. It was expected that RSEM would take at 

least 20 times as long as HISAT2 which wasn’t a possibility in the short timescale of the project. 

HISAT2 was chosen due to its ability to also map introns and jump over these splice sites. This could 

lead to more reads being mapped opposed to e.g. bowtie. TAIR10 was used as a reference genome, 

this is the same as in the paper. 

No quality check of the reads was done and as such no reads were trimmed before mapping. This 

choice was made based on prior knowledge, both from the paper and the teaching staff of BIF30806. 

They found little low quality reads and this was also confirmed by other students doing similar 

projects. 

For annotation, Stringtie 1.3.2d (Pertea et al., 2015) was used. While doing the differential 

expression analysis, we found multiple transcripts being annotated to one single gene. This resulted 

in overall lower count values per transcript as these were divided over multiple imaginary transcripts 

by stringtie. To exclude multiple transcripts mapping to the same gene, the -e parameter was used 

while running stringtie. This option makes sure stringtie only returns the expression values of the 

transcripts given in the reference genome. 

To validate the mapping, the bam and bam index file were loaded in iGV to the TAIR10 genome. The 

alignments were checked by eye. Reads from replicates were found to be correctly mapped to the 

genes, an example is shown in Figure 2. 

  

Figure 2: reads of two replicates of sample Leaf51 mapped to the TAIR10 genome by Hisat2. The scales differ a bit for the 
two replicates but they show a similar alignment. 

 



Counting and differential expression analysis 
To translate the .gtf annotation file contents into actual counts per transcript, Equation 1 was used. 

Equation 1: formula to calculate counts with transcript_length and read length in basepairs. 

 𝑐𝑜𝑢𝑛𝑡𝑠 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 = 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ∗ 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡_𝑙𝑒𝑛𝑔𝑡ℎ  / 𝑟𝑒𝑎𝑑_𝑙𝑒𝑛𝑔𝑡ℎ 

A basic python script was used to parse the contents of the gtf files, using the coverage and 

transcript length given for each transcript. The counts were calculated and written to a tsv file. The 

annotation step returned all genes in the reference TAIR10 genome, whether they were expressed 

or not. Because of this, a cutoff coverage was used of 0.01. Only transcripts with a coverage higher 

than 0.01 were taken in consideration. This differs from the paper as they use a cutoff of 0.5 Counts 

per Million. In this project, the coverage was used instead of CPM to improve the understandability 

of the script. 0.01 was taken as a cutoff as this resulted to a CPM of 0.5 for transcripts of an average 

length. 

These count values were used as input for the actual differential expression analysis using DESeq2 

(Love et al., 2014). In the paper by Maier et al., EdgeR was used. However, due to the easier access 

to DESeq2 and some technical difficulties with installing EdgeR on the server, we used DESeq2. 

These packages uses very similar techniques. First, the counts are normalized. In EdgeR, this is done 

by a trimmed mean of M values method while we used a log transformation to normalize the 

counts. Now, the gene wise dispersion were estimated. These dispersion values were used to 

calculate a standard error (SE). This SE, together with the base mean of a generalized linear model 

was used in a binomial Wald test to determine the log2fold changes and a p-value. The p-values 

were corrected for a high FDR with the same Benjamini-Hochberg method as was used in the paper. 

In the test, a log2fold change of 1 was taken as null hypothesis while the alternative hypothesis was 

that a gene has to have a bigger absolute log2fold change than 1. This is adjusted to prevent 

artificially low p-values as opposed to a null hypothesis of 0. 

For each sample, these fold changes and p-values were calculated. To make further analysis easier, a 

simple python script was written to parse these csv files into one big csv file for all fold changes and 

one csv file for all p-values of all samples. 

The results were validated by counting some reads ourselves and checking if these compare to the 

results from our scripts. 

Clustering and GO/pathway enrichment 
In the Maier et al. paper, genes were clustered using Ward’s method. This gives a precalculated 

dendrogram which was not feasible in our python script. In this project complete linkage was used 

as an alternative to ward’s method. The distance between samples and genes was calculated by 

Pearson correlation. The result from the clustering was visualized in a heatmap. A principal 

component analysis was also performed on the data using the log2fold changes. For the clustering, a 

subset of 21 genes was used to decrease workload. These 21 genes all came from the GNSR genes 

mentioned in the paper. 

The GO enrichment analysis was done using topGO (Alexa & Rahnenführer, 2016) as opposed to 

AgriGO2v2 which was used in the paper. This adjustment was made due to similar reasons as the 

DESeq2 choice, AgriGO2v2 yielded to many technical difficulties. TopGO was used instead of other, 

more general methods like performing a manual fisher test because topGO already comes with a 

premade list of all GO terms involved in biological processes. TopGO performed a fisher test on the 

p-values obtained in the DE analysis. Afterwards, these p-values were corrected with the same 



Bejamini-Yekutieli (BY) method as was used in the paper. These p-values were compared to the GO 

terms in topGO. 

The pathway enrichment was done using KEGG, similar statistical operations were performed as in 

the GO enrichment. For these analyses, all differentially expressed genes were used. 

The results of the pathway enrichment were validated by performing an analysis using KOBAS 

webtool (Bu et al., 2021). Again, a Fisher’s exact test was used with an BY FDR correction. 

Results 
The first real results are obtained in the differential expression step. Differentially expressed genes 

were found for all seven samples, including the reference. These are shown in Figure 3 and Figure 3. 

As can be seen in these figures, the number of found DEGs is approximately 1/3 of the amount 

found in the Maier et al. paper. It will be discussed later why this is the case.  

Also, some MA plots were made for the seven samples. As expected, the reference showed no 

differential expression at all. An example is shown in Figure 5. 

 

Figure 5: MA plot of expressed genes in sample Leaf51. Genes with a significant expression (padj< 0.01) are shown in blue. 

Figure 3: Differentially expressed genes (DEGs) found in 
all samples in Maier et al. paper. 

 

Figure 4: Differentially expressed genes (DEGs) found in 
all samples in this project. 

 



As can be seen in the figure, many genes are not significantly expressed. Only few genes are marked 

in blue. Another notable observation is that most genes, significant or not, are upregulated. This is 

consistent in all samples. 

The resulting heatmap from the clustering is shown in Figure 6. 

The big blue bar on the left is the reference which of course 

shows no fold change at all. These genes show very similar 

expression in most samples. Only the third column, Leaf61, 

shows a slightly different expression pattern for some genes. 

Again, most genes are upregulated which can be seen from the 

predominantly red boxes. 

The results from the GO enrichment analysis showed similar 

results for all bacteria too. A visualization of the GO terms in 

Leaf137 is shown in Figure 7. 

 

 

 

 

   

 As can be seen in the figure, only few GO terms are actually significant. Some notable ones are GO 

0042742 which is a defense response to bacterium term and GO 0071456 which is a cellular 

response to hypoxia term. Hypoxia is a situation in an organism in which a shortage of oxygen is 

present. 

The KEGG pathway analysis resulted in only one pathway being upregulated in all bacteria. This is 

the Phenylpropanoid pathway. 1 gene in this pathway is also found in the 24 GNSR genes mentioned 

in the Maier et al. paper. Other pathways were found but not consistently in all samples. Some 

examples are Amino sugar and nucleotide sugar metabolism in Leaf137, Leaf69 and Leaf61 and 

Glycosphingolipid biosynthesis in Leaf53 and Leaf177. 

Some results of the pathway analysis using the online KOBAS tool are shown in Figure 7 and Figure 8. 

Figure 6: Heatmap of DEGs, clustered by 
complete linkage based on pearson correlation 
distance. Samples are shown on the X axis and 
genes on the Y axis. 

Figure 7: Significant found GO terms in sample Leaf137. 



 

Figure 8: pathway analysis using KOBAS for sample Leaf51  Figure 9: pathway analysis using KOBAS for sample Leaf61 

As can be seen in the figures, the KOBAS pathway analysis is very similar for all samples. The same 

phenylpropanoid pathway is found as in the KEGG pathway analysis. Also, the tryptophan 

metabolism is found to be expressed. This is similar to the paper by Maier et al., stating that the 

GNSR is linked to the tryptophan-derived secondary metabolism. 

Discussion & conclusion 
The main research questions of this project are: 

- For bacteria that elicit a strong response, are the same defense pathways triggered or 

different ones?  

- Do these defense pathways differ from the GNSR genes pathway? If so, in what way? 

In the used bacteria samples, multiple defense pathways were triggered. However, the results 

differed for the two main techniques used. In the KEGG analysis, only one pathway was found in all 

samples with multiple differing pathways between the samples. There seems to be no relation 

between the phylum of the sample and the expressed pathways. This can be concluded because all 

samples are from different phyla (Maier et al., 2021). This is not expected, because bacteria in the 

same phylum usually share more similarity and will use similar attack strategies. 

In the KOBAS analysis, all found pathways were very much the same for all samples as can be seen in 

Figure 8. This is a big difference from the KEGG analysis. However, this does fit better with the idea 

of a GNSR as proposed by Maier et al. The reason for this difference in the two analyses could be a 

technical one. In the KEGG analysis, only genes starting with AT1G were taken in account. This way, 

many genes were left out. This could lead to less significant pathways being found. This also explains 

why only one pathway was expressed in all six samples, which is not expected according to Maier et 

al.  

This result is also supported by the clustering, in which all samples show similar expression values for 

all genes. However, in the clustering only 21 genes were used to decrease the amount of calculations 

needed. All these 21 genes are from the set of GNSR genes so it is expected that they behave the 

same in all samples. In future research, the clustering can be expanded by adding many more genes. 

This could lead to more interesting results, like a subset of genes being expressed in a specific 

bacterial phylum. 



To answer the second research question, the KEGG analysis can still be used. If information is left out 

but pathways are still significantly expressed, we know that they would have been expressed for 

sure in the full analysis. Here, it has been found that only one gene corresponds to the GNSR genes 

from the paper. This suggests other pathways are triggered in the bacteria eliciting a strong 

response. This could happen because these pathways are so highly expressed that the GNSR 

pathway is not needed anymore. The KOBAS analysis gives a clear indication that the tryptohan 

metabolism pathway is expressed as is proposed by Maier et al. The full data set gives a more similar 

answer to the paper. In this analysis however, the individual genes making up the pathway were not 

looked into. 

Another point to address is the low amounts of found DEGs. In this project, on average 1/3 of the 

DEGs were found as opposed to the paper by Maier et al. The consistency of the found DEGs being 

1/3 of the paper DEGs indicates that there is a structural flaw in the paper or this project. This could 

be due to multiple reasons. The samples all consisted of 5 replicates. If one of these replicates 

contains a big outlier count value for a gene, DESeq will give a NA value for the p value as it can’t do 

a reasonable test on this data. While the data was log transformed, still many genes yielded NA 

values after the DE analysis. This can be resolved by slicing out the outlier replicates. Another reason 

could be the cutoff coverage for the DE analysis. In this project, only transcripts with a coverage > 

0.01 were taken in account as opposed to a CPM > 0.5 as was used by Maier et al. This can lead to 

too little genes being taken in account, especially for the short transcripts.  

Combining all three data analysis steps turned out to be harder as expected. Files often needed 

slight formatting which was more work to automate in a snakemake file than to just e.g. manually 

move all samples to a different folder. For this reason, only the mapping and annotation were run in 

a snakemake file while the others where just run manually. This was automated a bit by listing 

filenames in a text file and reading the data using this text file. This way, all samples could be ran by 

one single command instead of running the code for each individual sample. This can be automated 

a lot more by adding these steps to the snakemake file. 

In the future, this research can be improved a lot. Many more genes can be taken in account in the 

clustering and pathway analyses. Also, all samples from the paper can be used. This will probably 

give a more general conclusion than found in this project. Also, the difference between the mapping 

with RSEM and Hisat2 can be looked into, as Hisat2 actively skips introns while this is not necessarily 

the case for RSEM. 

All in all, we can conclude that multiple pathways are expressed in plants inoculated with bacteria 

eliciting a strong response. However, the response of A. Thaliana is very similar when inoculated by 

different bacteria. The general non-self response proposed by Maier et al. is found in all samples but 

another pathway is also consistently found. This is the phenylpropanoid pathway. This pathway is 

involved in the lignification of cell walls (Dixon et al., 2002)so it makes sense that this pathway is 

expressed while the plant is under attack of hazardous pathogens.  

Contributions 
Me and Ward Koehler worked together on the counting and differential expression step. I did the 

most of the scripting, resulting in a python script extracting count values from gtf files. A R script 

doing the DE analysis using DESeq2. Another python script parsing these DE results in the correct 

format and another R script to visualize some of the DE analysis results. Meanwhile Ward checked 

my scripts and did background research on parameter settings for e.g. DEseq2. Also, maintaining the 

groupfolder on the server and the gitlab project were done by me. 
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